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Summary

1. Occupancy – the proportion of area occupied by a species – is a key notion for addressing important questions

in ecology, biogeography and conservation biology. Occupancymodels allow estimating and inferring about spe-

cies occurrence while accounting for false absences (or imperfect species detection).

2. Occupancy models can be formulated as hidden Markov models (HMM) in which the state process captures

theMarkovian dynamic of the actual but latent states, while the observation process consists of observations that

aremade from these underlying states.

3. We show how occupancy models can be implemented in program E-SURGE, which was initially developed

to analyse capture–recapture data in the HMM framework. Replacing individuals by sites provides the user with

access to several features of E-SURGE that are not available altogether or just not available in standard occu-

pancy software: i) flexible model specification through a user-friendly syntax without having to write custom

code, ii) decomposition of the observation and state processes in several steps to provide flexible parameterisa-

tion, iii) up-to-date diagnostics of model identifiability, and iv) advanced numerical algorithms to produce fast

and reliable results (including site random effects).

4. To illustrate E-SURGE features, we provide implementation and analysis details for several occupancy mod-

els. We also provide simulated and real-world examples as well as further specifications and information in a

companionwiki platform http://occupancyinesurge.wikidot.com/.

Key-words: Capture–recapture, detectability, detection–non-detection, E-SURGE, hidden Mar-

kovmodels, presence–absence, species occurrence

Introduction

Occupancy models allow estimating and inferring about spe-

cies occurrence while accounting for false absences or imper-

fect species detection (MacKenzie et al. 2006). These models

have been extensively used to address important questions in

fields as diverse as conservation biology, biogeography, wild-

life epidemiology, metapopulation dynamics and community

ecology (review in Bailey,MacKenzie &Nichols 2013).

Following the seminal work of MacKenzie et al. (2006), it

was soon realized that occupancy models could be formulated

as hidden Markov models (HMMs) in which two time series

run in parallel: the state process captures the Markovian

dynamic of the actual but latent states (e.g. site occupied vs.

unoccupied), while the observation process consists of obser-

vations that are made from these underlying states (e.g. species

detected vs. undetected; e.g. Royle &K�ery 2007). Interestingly,

the formulation of capture–recapture models as HMMs was

also witnessed in the capture–recapture literature (Pradel 2005;

Gimenez et al. 2012). A close connection exists between cap-

ture–recapture and occupancy models and can be realized by

interchanging individuals in a capture–recapture context and

sites in an occupancy context.

Several software programs are available to fit occupancy

models, either in the frequentist framework with programs

PRESENCE (Hines 2013), MARK (White & Burnham 1999)

and the R package unmarked (Fiske & Chandler 2011), or in

the Bayesian framework using the BUGS language (Win-

BUGS,OpenBUGSor JAGS; e.g. K�ery& Schaub 2012).Win-

BUGS requires writing custom code and knowledge about the

Bayesian theory. Programs PRESENCE and MARK often

require the construction of designmatrices to specify models, a

process that can be prone to user’s errors. PRESENCE and

unmarked do not incorporate random effects, and MARK

does so only in limited ways.

Here, by exploiting the equivalence between occupancy and

capture–recapture models, we illustrate how occupancy mod-

els can be implemented in program E-SURGE (Choquet,

Rouan & Pradel 2009), which was initially developed to*Correspondence author. E-mail: olivier.gimenez@cefe.cnrs.fr
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analyse capture–recapture data in the HMM framework. We

believe that some users will benefit greatly by realizing that

E-SURGE has features that are not implemented together in

available occupancy software, namely i) flexible model specifi-

cation through a user-friendly syntax without having to write

custom code, ii) advanced numerical algorithms to produce

fast and reliable results, including the incorporation of site ran-

dom effects, and several other features that are simply not

implemented in these other software programs, namely iii)

decomposition of the observation and state processes in several

steps to provide flexible parameterisation, and iv) up-to-date

diagnostics of model identifiability, in other words, a reliable

way of counting the number of parameters entering the calcu-

lation of the Akaike Information Criterion. We believe that

E-SURGE is a powerful option in the suite of software that

can be used for occupancy problems; however, few users may

recognize this option, even if they are current E-SURGE users.

Our goal in this paper is tomake E-SURGEmore accessible to

analysts and field biologists working on occupancy, and

related, problems.

HiddenMarkovmodelling of occupancy data

In Fig. 1, we provide the HMM formulation of the general

dynamic occupancymodels to carry out inference about occur-

rence and how extinction and colonization drive changes in

occurrence.

The parameters of interest are the probability of local

extinction e and of colonization c as well as the detection

probability P and the probability of initial occupancy w1

where we have assumed, for simplicity, all parameters are con-

stant across periods and sites. A HMM is built around three

pieces of information: the vector of initial-state probabilities,

the matrix of transition probabilities linking states in succes-

sive sampling occasions, and the matrix of observation proba-

bilities linking observations and states at a given occasion. At

the first sampling occasion t = 1, with the first state being

‘unoccupied’ and the second ‘occupied’, the vector of initial-

state probabilities is:

1� w1 w1½ � eqn 1

Then, the states are distributed as a first-orderMarkov chain

governed by the transition matrix with states unoccupied and

occupied at t in rows, and states unoccupied and occupied at

t + 1 in columns:

1� c c
e 1� e

� �
eqn 2

The observation process conditional on underlying occu-

pancy states is summarized by a matrix with unoccupied and

occupied states at t (rows) and undetected and detected obser-

vations at visits j (columns):

1 0
1� P P

� �
eqn 3

Single-season occupancy models can be reformulated as

HMMs and fitted in E-SURGE by imposing no extinction

(e = 0) and no colonization (c = 0) in the dynamic model. The

extension to multiple states with uncertainty (Nichols et al.

2007;MacKenzie et al. 2009) is illustratedwith breeding states,

and we consider three possible states. A site is ‘unoccupied’,

‘occupied by non-breeders’ or ‘occupied by breeders’, while the

observations are species undetected (coded 0), species detected

without young (coded 1) and species detected with young

(coded 2). We use w1 (resp. w2) the probability that the site is

occupied by non-breeders (resp. by breeders), P1 (resp. P2) the

detection probability of non-breeders (resp. of breeders). The

model can also accommodate state uncertainty. For example,

reproduction may occur on a site, but the young may not be

detected. We introduce d the probability of detecting evidence
of reproduction, given the site is occupied with young. Thus,

the vector of initial-state probabilities is:

1� w1 � w2 w1 w2
� �

eqn 4

while the transition matrix is the identity matrix. The primary

modifications are in the observationmatrix, which can be writ-

ten as

1 0 0
1� P1 P1 0
1� P2 P2ð1� dÞ P2d

2
4

3
5 eqn 5

which can be split in two steps to highlight the successive pro-

cesses of detection and breeding state ascertainment:

Fig. 1. Schematic hidden Markov representation of a dynamic occu-

pancy model with imperfect detection. We consider site i between sea-

sons (primary periods) t and t + 1 and three visits (secondary periods)

within each primary period. Each site is closed (i.e. no change in its

occupancy status) within primary periods but open (i.e. allowing for

changes in occupancy status) between primary periods (robust design

sensu; Pollock 1982). The first layer (circles) is a succession of hidden

states or latent states (0 for unoccupied vs. 1 for occupied) of site i at

season t + 1 (Xit+1) depending on its states at time t (Xit). The

dynamic of the states is driven by transition probabilities, here proba-

bilities of colonization c = Pr(Xit+1 = 1|Xit = 0) and local extinction

e = Pr(Xit+1 = 0|Xit = 1). The second layer (squares) corresponds to

the detection (Yitj = 1) or not (Yitj = 0) of the target species on site i at

visit j = 1, 2 or 3 conditional on site i being in stateXit. These events are

driven by the species detection probability P = Pr(Yitj = 1|Xit = 1).

The initial-state probabilities w1 = Pr(Xi1 = 1) and 1 � w1 are not

represented.
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1 0 0
1� P1 P1 0
1� P2 0 P2

2
4

3
5�

1 0 0
0 1 0
0 1� d d

2
4

3
5 eqn 6

We introduce an intermediate set of observations: unde-

tected, detection of non-breeders, and detection of breeders.

The first matrix in the product (6) specifies the probabilities of

these intermediate observations conditional on the states, while

the second matrix specifies the probabilities of reproduction

conditional on the intermediate observations.

Fittingmodels in E-SURGE

A typical session in E-SURGE follows the workflow provided

in Fig. 2. Here, we provide a brief description of the main fea-

tures of E-SURGE. We refer to the E-SURGE manual (Cho-

quet & Nogu�e 2013) as well as Choquet (2008) and Choquet,

Rouan and Pradel (2009) for additional details.

There are a few standard preliminary steps that we do not

detail here. Most importantly, the user needs to select the

Occupancy option. The number of events to specify is the num-

ber of observations (e.g. undetected, detection of non-breeders

and detection of breeders), while the number of states should

always be the number of states to be used (e.g. unoccupied,

occupied by non-breeders, occupied by breeders) plus one.

This additional state is needed because E-SURGEwas initially

developed to estimate demographic parameters and uses the

absorbing state ‘dead’ to handle mortality as a transition from

‘alive’ states to the ‘dead’ state.

Themodel construction is served in E-SURGEby twomod-

ules called GEPAT (GEnerator of PATtern of elementary

matrices) and GEMACO (Generator of Matrices of Con-

straints; Choquet 2008). In GEPAT, the user specifies the

structure of the vector of initial-state probabilities, the matrix

of transitions governing the state process and the matrix

of observations (conditional on the states) governing the

observation process. To specify a parameter that will be esti-

mated (i.e. that will be assigned an effect in GEMACO, see

below), any letter can be used. The minus sign ‘�’ means that

the parameter corresponding to this cell will always be set to 0,

while the asterisk ‘*’ means the complementary of the sum of

all the other parameters on the same row.

Of practical interest, the three elements of a HMM can be

specified through a multistep process that proves very useful in

accommodating state uncertainty (e.g. eqn 4).

In GEMACO, we specify the effects (sensu the design

matrix in programs MARK and PRESENCE) using a self-

explanatory syntax: for example, a season effect will be speci-

fied by ‘t’ for time, a group effect by ‘g’, while a constant effect

will be ‘i’ for intercept. If the effect of a site covariate needs to

be investigated, we use ‘i + xind’ where xind specifies the

slope of the relationship. A site random effect can also be

specified in the same spirit using the syntax ‘i + ind’ (see

below for an example). The matrices defined at the GEPAT

step can be manipulated using the syntax ‘from’ for rows and

‘to’ for columns. For example, f(1).to(2) will pick the element

in row 1 and column 2 of the corresponding matrix, and if a

time effect is required on this element, then the syntax will be

f(1).to(2).t.

Case studies in E-SURGEusing simulated data

To illustrate the use of E-SURGE for fitting occupancy mod-

els, we used simulated data. Results from fitting the models to

these data are provided in Table 1. Estimates for all parame-

ters were close to the true values, and the 95%confidence inter-

vals covered the true values in all cases.

Below, we detail the most important steps of implementing

thesemodels in E-SURGE.We refer the reader to the compan-

ion wiki website http://occupancyinesurge.wikidot.com/ for

full details on how to simulate the data and implement the

model.

Fig. 2. Workflow diagram for E-SURGE.

We describe the successive steps of a typical

analysis in E-SURGE, from data input to

model fitting through model building and

effects specification. Steps that need to be

accomplished through pull-downmenus are in

white boxes; other steps can be done directly

from themain interface.We provide details on

key steps in using E-SURGE in the text or

boxes.
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DYNAMIC MODELS

We start with the dynamic occupancy model described in

formulas (1), (2) and (3) above. This mathematical formula-

tion of the model can be translated for E-SURGE as fol-

lows. In GEPAT, the vector of initial-state probabilities is

specified as

�w
which corresponds to (1). The additional dead state is not dis-

played at this step. Then, the transitionmatrix in (2) is specified

as

� c �
e � �
� � �

where the last row and column are for the dead state. Finally,

the observationmatrix in (3) is coded as:

� �
� P

� �

where the last row corresponds to the dead state. In GE-

MACO, we write i at the Initial state and Event steps to

impose a constant parameter. Regarding the Transition

step, the data were simulated with three seasons (primary

sessions) and three visits within each season (secondary

session); therefore, we use to.t(1 2 4 5 7 8)+to.t(3 6) (or

to.t(1 2 4 5 7 8,3 6)). The to specifies the columns of the

matrix to be different, resulting in distinguishing the coloni-

zation and extinction parameters (note that from would

produce exactly the same result by differentiating the rows).

To handle the robust design, t(1 2 4 5 7 8) makes the inter-

vals between secondary occasions identical, and the corre-

sponding parameters will be fixed to 0 to impose closure

within a primary session (i.e. neither extinction nor coloni-

zation). The term t(3 6) makes the intervals between the last

visit in a season and the first visit of the next one (between

primary sessions) identical.

SINGLE-SEASON MODELS

We view a single-season model as a constrained dynamic

model. Thus, we start with the dynamic model as described

above. InGEPAT, the specification for the Initial state and the

Event steps is exactly the same as for the dynamic model. To

satisfy the closure assumption, we impose neither colonization

nor extinction between sampling occasions by specifying at the

Transition step:

� � �
� � �
� � �

In GEMACO, we use i for all steps to obtain constant

parameters.

The extension of this model to multiple states with uncer-

tainty is obtained as follows in E-SURGE. In GEPAT, the ini-

tial-state probabilities in (4) are:

� w w

while the Transition step is the same as before. The difference

lies in the specification of the observation process that is

accomplished in two steps to match (6) in GEPAT: step 1, the

detectionmatrix, is:

� � � �
� P � �
� � P �
� � � �

while step 2, the reproduction assignmentmatrix, is:

� � �
� � �
� � d

� � �

In GEMACO, we use to for the Initial state step to distin-

guish the occupancy probabilities according to states, from for

step 1 of the Event step to distinguish the detection probabili-

ties according to states and i for step 2 to have a constant

assignment probability.

A real-world example illustrating heterogeneity in
species detection

We use a real-world example to further illustrate E-SURGE

capabilities. In particular, we show how E-SURGE can easily

accommodate site-specific covariates, deal with heterogeneity

in the species detection process and identify parameter redun-

dancy issues.

Based on signs of presence collected between 2002 and 2006

by a network of trained volunteers, Rolland et al. (2011) mod-

elled the occurrence of the Eurasian lynx (Lynx lynx) in the

French Jura mountains. Briefly, a grid with cells of 9 9 9 km

Table 1. Estimates of the parameters in the occupancymodels fitted to

the simulated data set in E-SURGE. A single data set was generated

from the model under study with 250 sites, 3 primary occasions and 3

secondary occasions whenever required. For each parameter, the true

value, the maximum likelihood estimate and the 95% confidence inter-

val are provided

Model Parameter

True

value Estimate

95%Confidence

interval

Dynamicmodel w1 0�6 0�59 (0�53, 0�65)
c 0�3 0�32 (0�27, 0�39)
e 0�5 0�53 (0�47, 0�59)
P 0�7 0�70 (0�67, 0�73)

Single-season w 0�8 0�8 (0�70, 0�87)
P 0�5 0�5 (0�44, 0�56)

Multistate with

uncertainty

w1 0�3 0�30 (0�23, 0�37)
w2 0�5 0�50 (0�43, 0�57)
P1 0�5 0�52 (0�43, 0�61)
P2 0�7 0�70 (0�65, 0�76)
d 0�8 0�79 (0�73, 0�85)
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was used, resulting in 197 sites, and the study period was split

into five 1-year periods. Observers searched for signs of lynx

presence, and each cell was assumed to be visited at least once

each year.

The authors used a single-season occupancy model as

described above. They, via model selection, found that the

probability that a site was used by lynx was best explained by

the proportion of forest cover xi in site i. Thus, on the logit

scale, we have:

log itðwiÞ ¼ b0 þ b1xi eqn 7

where the b’s are regression parameters to be estimated.

To further incorporate site heterogeneity in the species

detection process, we implemented a model with a site random

effect and another one with a 2-class finitemixture.

A feature of E-SURGE is that it allows accommodating site

random effects. Let us consider site-to-site variation in the

detection probability as follows:

log itðPiÞ ¼ lþ gi eqn 8

where l is the mean detection probability and gi are normally

distributed with mean 0 and variance r2. Maximum likelihood

estimates of l and r2 are obtained through numerical integra-

tion via the Gauss–Hermite quadrature (Gimenez & Choquet

2010).More complex random structures can also be accommo-

dated (Choquet &Gimenez 2012; Choquet et al. 2013).

As an alternative, we consider a 2-class finite mixture model

(Royle 2006).We considered four states: unoccupied in class 1,

unoccupied in class 2, occupied in class 1 and occupied in class

2. There are two observations: species undetected (0) or

detected (1). The vector of initial-state probabilities is:

pð1� w1Þ ð1� pÞð1� w2Þ pw1 ð1� pÞw2½ � eqn 9

where p is the proportion of sites that belong to class 1 and w1

(resp. w2) is the occupancy probability for sites that belong to

class 1 (resp. 2). We obtain p by summing the first and third

components in (9), while the ratio of the fourth component

over p gives 1�w2, hence w2, and the ratio of the third compo-

nent over p givesw1.

However, when this mixture model is fitted, E-SURGE

detects that the model is parameter redundant.More precisely,

parameters p, w1 and w2 cannot be estimated separately, and

the number of estimable parameters is 4, while the model has

5. To make these parameters estimable, the constraint w1 = w2

can be imposed to ensure that the occupancy probability is no

longer redundant. This means disentangling i) the assignment

of sites to a class of heterogeneity and ii) the occupancy pro-

cess. Here, again, as in the multistate occupancy model with

uncertainty in (6), the ability in E-SURGE to specify the state

or the observation process in several steps proves useful. More

precisely, we write the vector of initial-state probabilities (9) as

thematrix product ofX andY inGEPATwhere:

X ¼ ½p 1� p� eqn 10

Y ¼ 1� w1 0 w1 0
0 1� w2 0 w2

� �
eqn 11

then force the w‘s to be the same in GEMACO. The matrix of

observation probabilities is:

1 0
1 0

1� P1 P1

1� P2 P2

2
664

3
775 eqn 12

where the states are in rows and the observations in columns.

We fitted threemodels to the lynx data,M0 ¼ wðforestÞ;½ P�,
Mran ¼ wðforestÞ;PðrandomÞ½ � and Mmix ¼ wðforestÞ;½
PðmixtureÞ�, with self-explanatory notation. The covariate for-
est cover had a similar positive effect on the occupancy proba-

bility whatever the structure on the detection probability

(b1 = 7�4 (SE = 1�3) in M0, b1 = 9�3 (SE = 0�5) in Mran and

b1 = 9�1 (SE = 1�8) inMmix). Site-to-site variation in the detec-

tion process was equally captured by both models with hetero-

geneity (AICc[M0] = 1000�1 vs. AICc[Mran] = 978�6 and AICc

[Mmix] = 980�2). In Mran, the mean detection probability was

estimated at l̂ ¼ 0�10ðSE ¼ 0�20Þ (hence log it�1ðl̂Þ ¼ 0�53
ðSE ¼ 0�53Þ), while the estimated standard deviation of the

random effect was r̂ ¼ 1�25 ðSE ¼ 0�22Þ. In Mmix, the detec-

tion probability in state 1 was P̂1 ¼ 0�25 ðSE ¼ 0�05Þ in pro-

portion p̂ ¼ 0�54 ðSE ¼ 0�10Þ, while the detection probability

in state 2 was P̂2 ¼ 0�74 ðSE ¼ 0�08Þ. By having the ability to
easily construct heterogeneity models for detection probability

in conjunction with occupancy, we have more confidence in

our results. The relationship between lynx occupancy and for-

est cover is stronger with the highest ranked models (Mran and

Mmix) than with a lower ranking model that does not include

any additional structure on detection (M0). By modelling het-

erogeneity in detection, we are better able to uncover and

describe important covariates of occupancy, which leads to

better management.

Further E-SURGE capabilities

From a numerical perspective, E-SURGE provides a reliable

number of parameters via an algorithm described in Choquet

and Cole (2012), which is crucial in particular with parameter-

redundant models or boundary estimates, and is one of the

key steps for correct model selection using AIC. To date, we

are aware of a single study investigating parameter redun-

dancy in occupancy models which, actually, used E-SURGE

(Fr�eville et al. 2013). With the ongoing development of com-

plex models, the issue of parameter redundancy is likely to

occur more often, and this algorithm in E-SURGE should be

useful.

From a modelling perspective, E-SURGE offers the possi-

bility to fit multiple species models (MacKenzie, Bailey & Nic-

hols 2004; Waddle et al. 2010). Additionally, users may often

be interested in deriving the probability that a site is occupied

for sites without detections, either to build maps of presence or

to calculate the so-called finite-population occupancy (Mac-

Kenzie et al. 2006). To do so, the latent states of HMMs need

to be estimated, and this can be achieved in a frequentist frame-

work via the Viterbi algorithm (Rouan et al. 2009; Fiske,

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 592–597
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Royle &Gross 2013), which is available in E-SURGE (Rouan

et al. 2009).

The companion wiki website http://occupancyinesurge.

wikidot.com/ presents such examples.

Conclusions

Although initially developed for capture–recapture data,

E-SURGEcan be efficiently used to build and analyse a variety

of occupancy models via the HMM framework. E-SURGE

includes a user-friendly syntax for specifying models without

having to write custom code and uses advanced numerical

algorithms to produce fast and reliable results. By strengthen-

ing the link between the two fast growing user communities of

capture–recapture and occupancy, E-SURGE has the poten-

tial to provide a unified framework for the construction and

analysis of hiddenMarkovmodels in ecology.
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